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Multipatch Unbiased Distance Non-Local Adaptive
Means With Wavelet Shrinkage
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Abstract— Many existing non-local means (NLM) methods
either use Euclidean distance to measure the similarity between
patches, or compute weight ωi j only once and keep it unchanged
during the subsequent denoising iterations, or use only the
structure information of the denoised image to update weight ωi j .
These may lead to the limited denoising performance. To address
these issues, this paper proposes the non-local adaptive means
(NLAM) for image denoising. NLAM treats weight ωi j as an
optimization variable and iteratively updates its value. We then
introduce three unbiased distances, namely, pixel–pixel, patch–
patch, and coupled unbiased distances. These unbiased distances
are more robust to measure the image pixel/patch similarity
than Euclidean distance. Using the coupled unbiased distance,
we propose the unbiased distance non-local adaptive means
(UD-NLAM). Because UD-NLAM uses only a single patch size
to compute weight ωi j , we introduce multipatch UD-NLAM
(MUD-NLAM) to adapt different noise levels. To further improve
denoising performance, we then propose a new denoising method
called MUD-NLAM with wavelet shrinkage (MUD-NLAM-WS).
Experimental results show that the proposed NLAM, UD-NLAM,
and MUD-NLAM outperform existing NLM methods, and MUD-
NLAM-WS achieves a better performance than the state-of-the-
art denoising methods.

Index Terms— image denoising, non-local means, non-local
adaptive means, unbiased distance, multipatch unbiased distance
non-local adaptive means, wavelet shrinkage.

I. INTRODUCTION

WHEN we acquire or transmit an image, different types
of noise are inevitably introduced. Many applications

of computer vision, such as image recognition and segmen-
tation, require image denoising as a pre-process. The goal
of image denoising is to remove the noise from the original
image effectively while preserving the fine details, structures
and edges of the original image as much as possible. Thus,
image denoising plays an important role in computer vision.
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In recent years, various methods were proposed to remove
Gaussian noise. Yaroslavky proposed a denoising filter [1] that
considers a given neighborhood of each pixel and takes the
average values of pixels which are similar in intensity. Based
on the work in [1], Smith and Brandy presented the SUSAN
filter [2] that computes the weights according to the spatial
distance between the center pixel and the others. Using the
similar idea, Sigma filter [3] and bilateral filter [4], [5] were
proposed for image denoising. Dual domain image denoising
(DDID) method [6], [7] alternatively uses the bilateral filter in
spatial domain and wavelet shrinkage in frequency domain to
obtain the optimal denoised results. Derived from DDID, pro-
gressive image denoising [8] utilizes deterministic annealing to
remove the noise progressively. In addition, the Gaussian scale
mixture algorithm [9] and its orientation-adapted version [10]
were also proposed to remove the Gaussian noise. However,
these pixel-based or local denoising methods consider only
local structure information and their denoising performance is
often limited.

Unlike these pixel-based or local denoising methods,
the non-local means (NLM) [11], [12] introduced in 2005 takes
an image patch as a processing unit, and estimates the
denoised result within a non-local search area by computing
the similarity between patches. Thereafter the patch-based
non-local idea was widely utilized in many denoising methods.
UINTA [13]–[15] is an unsupervised and adaptive filtering
method that iteratively estimates the patch value by decreasing
the joint entropy between the target patch and its neighbour-
hoods. Block-matching and 3D filtering (BM3D) [16], [17]
applies collaborative filtering to the grouped similar patches to
obtain an enhanced sparse representation in transform domain
and to preserve the essential features of images. In 2013, Non-
local Bayes (NL-Bayes) [18], [19] was proposed to calculate
the denoised image patches by matrix inversion. In 2015,
a novel patch-based multiscale products algorithm [20] was
proposed. It also uses the patch similarity in spatial domain
and multiscale products in frequency domain to obtain two
initial denoised images.

Given a noisy image Y = X + N, where X is the clean
image and N is the Gaussian noise model, the principle of
NLM is to take each image patch as a unit and calculate the
weighted means of all neighbouring patches in a given search
window. NLM is defined by

X̂i =
�

j∈Si
ωi j Y j�

j∈Si
ωi j

, (1)
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TABLE I

NOTATION SUMMARY

where X̂i is the denoised image patch centered at pixel i , and
Y j is the noisy image patch centered at j . Si denotes the
search window with center pixel i . The weight ωi j between
two patches Yi and Y j is defined as

ωi j = exp(−||Yi − Y j ||2
h

) (2)

where || · || denotes the �2 norm and h is the smoothing
parameter.

Based on the framework of NLM, many improved versions
were proposed successively, such as non-local Euclidean
medians (NLEM) [21], improved NLEM (INLEM) [22],
non-local patch regression (NLPR) [23], probabilistic
NLM (PNLM) [24], NLM with local James-Stein type center
pixel weights (LJS-NLM) [25] and affine NLM [26]. As seen
from the optimization models of NLEM, INLEM and NLPR
in Table II, they differ from weight ωi j or ||Xi − Y j ||.
PNLM computes the probabilistic weight which reflects the
distribution of the image patch distances. LJS-NLM obtains
the center pixel weight by constructing the James-Stein
shrinkage estimator. Affine NLM calculates the weight as the
affine invariant patch similarity. These methods also aim at
obtaining the average image patch in a search window, while
their difference is how to calculate weight ωi j . However,
in order to avoid a heavy computation burden, many NLM-
based methods keep weight ωi j unchanged. It means that
these methods compute ωi j only once and keep it fixed
in subsequent denoising iterations. This may lead to a bad
denoising performance because the similarity between two
image patches changes in each denoising iteration. Other
NLM-based methods utilize only the structure information
of the denoised image in each iteration. This often leads to
detail loss and even over-smoothing in the denoised images.

To preserve more effective information of the original
image in the iterative denoising processes, we propose four

NLM-based algorithms in this paper. Our main contributions
are listed below:

1. We propose the non-local adaptive means (NLAM). NLAM
treats weight ωi j as an optimization variable that is adaptive
to the image content change, and then updates its value in
each denoising iteration.

2. To better evaluate pixel/patch similarity, we introduce three
unbiased distances, namely the pixel-pixel unbiased dis-
tance, patch-patch unbiased distance and coupled unbiased
distance. These unbiased distances take advantage of the
structure information of both the noisy image and the
denoised image in each iteration. Compared with Euclidean
distance, they are more robust to measure the similarity
between two image pixels/patches.

3. Using the coupled unbiased distance, we propose the
unbiased distance non-local adaptive means (UD-NLAM).
It takes advantages of NLAM and robustness of the coupled
unbiased distance.

4. Extending UD-NLAM from single patch to multipatch,
we further introduce multipatch UD-NLAM (MUD-
NLAM) that uses multipatch coupled unbiased distance to
measure the similarity between two image patches. MUD-
NLAM is able to automatically adjust the importance of
denoising effect of each patch size according to different
noise levels.

5. Including wavelet shrinkage, we propose the MUD-NLAM
with wavelet shrinkage (MUD-NLAM-WS) that not only
takes advantages of MUD-NLAM but also applies the
wavelet shrinkage for preserving image details while min-
imizing artifacts near the edges.

6. We also provide extensive experiments to evaluate our
proposed methods. The experiment results demonstrate that
the proposed NLAM, UD-NLAM and MUD-NLAM show
superior denoising performance over existing NLM-based
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TABLE II

OPTIMIZATION MODELS

methods, and MUD-NLAM-WS shows the competitive
denoising performance with BM3D and outperforms other
algorithms in terms of quantitative evaluations and visual
comparisons.

Our initial works were published in conference papers [27]
and [28]. Compared with the conference papers, we propose
two new denoising methods, i.e. MUD-NLAM and MUD-
NLAM-WS, and perform comprehensive experiments for algo-
rithm validation.

This paper is organized as follows. Section II will briefly
review the optimization models of several filters and NLM-
based methods. Section III will introduce NLAM. Section IV
will define three unbiased distances and then present the
proposed UD-NLAM. Section V will propose MUD-NLAM.
Section VI will describe the new denoising method MUD-
NLAM-WS in detail. Section VII will show the experiment
results in both quantitative evaluations and visual effects.
Finally, Section VIII will summarize the paper.

For easy reading, Table I summarizes the main notations
used in this paper.

II. OPTIMIZATION MODELS

Due to the fact that NLM was proposed to find the optimal
center patch in a search window, we can convert it into an
optimization problem. The optimization models of five NLM-
based methods are listed in Table II. They are traditional NLM,
NLEM, INLEM, NLPR and PNLM. In addition, we also
include two filters in Table II. They are the mean filter and
Gaussian filter. In Table II, X̂(i), X(i), Y( j) denote the values
of pixel i/j in the denoised image X̂, clean image X and noisy
image Y, respectively. X̂i , Xi , Y j are patches centered at the
pixel i/j in X̂, X and Y, respectively.

Mean filter aims at calculating the average value of all pixels
within a given window and set it to the target pixel value.
Gaussian filter can be considered as a weighted mean filter and
it calculates the average in a Gaussian weighted window. NLM
[11] uses an image patch as a processing unit and calculates
the weighted patch in a search window. By changing the
distance term ||Xi −Y j ||2 into ||Xi −Y j ||, NLEM [21] obtains
better denoising effect than traditional NLM. Based on NLEM,
INLEM [22] further modifies weight ωi j into

√
ωi j . NLPR

[23] keeps the same weight style as NLM while replacing
the �2 norm in NLM with �P norm. PNLM [24] uses the
distribution of patch differences to calculate the probabilistic
weight fi j .

However, these denoising methods calculate weight ωi j

only once and keep it unchanged in the subsequent denoising
iterations. This results in less computation cost but worse
denoising performance because the similarity between two
patches changes during iterative denoising processes.

III. NLAM

In Table II, the denoising methods update only X̂(i) or X̂i

and keep weight ωi j fixed in each denoising iteration. This is
improper because the similarity between two image patches
will change in each denoising result. To solve this problem,
we propose the non-local adaptive means (NLAM), which
makes weight ωi j to be iteratively adaptive to image content
change. NLAM treats weight ωi j as an optimization variable
and calculates its value in each denoising iteration. Thus,
in terms of the non-local functional in [29], [30], the opti-
mization model of NLAM can be defined as

{X̂i , ωi j } = arg min
Xi ,ωi j

�
j∈Si

ωi j ||Xi − Y j ||2

+ h
�
j∈Si

ωi j log ωi j

s.t . ωi j ≥ 0,
�
j∈Si

ωi j = 1. (3)

where
�
j∈Si

ωi j ||Xi −Y j ||2 and
�
j∈Si

ωi j log ωi j are data and reg-

ularization terms, respectively. h ≥0 is a trade-off parameter.
To solve the optimization model in Eq. (3), we first fix X̂i

and solve ωi j by setting the derivative with respect to ωi j

to zero, and then fix ωi j to calculate X̂i . Given the initial

settings of X̂
(0) = Y and t = 0, after t +1 denoising iterations,

we alternatively calculate ωi j and X̂i as

W (t)
i =

�
j∈Si

exp

�
−||X̂(t)

i − Y j ||2
h

�
. (4)

ω
(t+1)
i j = 1

W (t)
i

· exp

�
−||X̂(t)

i − Y j ||2
h

�
, (5)

X̂
(t+1)

i =
�

j∈Si
ω

(t+1)
i j Y j�

j∈Si
ω

(t+1)
i j

, (6)

where W (t)
i denotes the normalization factor. The iterative

denoising processes of NLAM are shown in Algorithm 1.

IV. UD-NLAM

This section introduces three distances to measure the sim-
ilarity between pixels or patches, namely pixel-pixel unbiased
distance, patch-patch unbiased distance and coupled unbiased
distance. Using the coupled unbiased distance, the unbiased
distance non-local adaptive means (UD-NLAM) is then pro-
posed.
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Algorithm 1 NLAM

A. Unbiased Distances

1) Pixel-Pixel Unbiased Distance: Given two noisy pixels
Y(i) and Y( j) centered at i and j of noisy image Y, and their
corresponding clean pixels X(i) and X( j) from clean image
X, the relationship between

�
Y(i)−Y( j)

�2 and
�
X(i)−X( j)

�2

can be described as the following equation [11], [12], [31],

E
��

Y(i) − Y( j)
�2

	
= �

X(i) − X( j)
�2 + 2σ 2. (7)

where E [·] is expectation calculator and σ 2 is the noise
variance.

Inspired by Eq. (7), the squared pixel-pixel unbiased dis-
tance between Y(i) and Y( j) is defined as

D
2
U

�
Y(i), Y( j)

� = �
Y(i) − Y( j)

�2 − 2σ 2. (8)

This equation shows that the unbiased distance conveys more
similarity information between two pixels than Euclidean
distance by removing the bias caused by noise.

Similarly, if we have X̂(i) = �
l∈Si

ωil Y(l),
�

l∈Si

ωil = 1 and

j ∈ Si , we can define the squared unbiased distance between
the denoised image pixel X̂(i) and the noisy image pixel Y( j)
as

D
2
U

�
X̂(i), Y( j)

�=�
X̂(i)−Y( j)

�2−

�

l∈Si

ω2
il − 2ωi j +1

�
σ 2.

(9)

More generally, the squared unbiased distance between X̂(i)
and X̂( j) is

D
2
U

�
X̂(i), X̂( j)

�
= �

X̂(i) − X̂( j)
�2

−

�

l∈Si

w2
il +

�
q∈S j

w2
j q − 2

�
n∈S∗

winw j n

�
σ 2, (10)

where X̂(i) = �
l∈Si

ωil Y(l), X̂( j) = �
q∈S j

ωiq Y(q) and S∗ =
Si

�
S j . Si and S j are two search windows centered at pixel

i and j , respectively.

2) Patch-Patch Unbiased Distance: Given two noisy image
patches Yi and Y j , we add up all the squared pixel-pixel
unbiased distances within the patch window P to calculate
the squared patch-patch unbiased distance as

D
2
U

�
Yi , Y j

� =
�
p∈P

D
2
U

�
Yi (p), Y j (p)

�
= ||Yi − Y j ||2 − 2||P||σ 2, (11)

where ||P|| denotes the number of pixels within the patch
window P. Yi (p) and Y j (p) are the values of the pth pixels
in Yi and Y j , respectively.

Similarly, we can calculate the squared unbiased distance
between the denoised image patch X̂i and the noisy patch Y j

as

D
2
U

�
X̂i , Y j

� =
�
p∈P

D
2
U

�
X̂i (p), Y j (p)

�

= ||X̂i − Y j ||2 − ||P||

�

l∈Si

ω2
il − 2ωi j + 1

�
σ 2,

(12)

and the squared unbiased distance between two denoised
image patches X̂i and X̂ j as

D
2
U
(X̂i , X̂ j ) =

�
p∈P

D
2
U

�
X̂i (p), X̂ j (p)

�

= ||X̂i − X̂ j ||2 − ||P||

�

l∈Si

w2
il +

�
q∈S j

w2
j q

− 2
�
n∈S∗

winw j n

�
σ 2, (13)

where X̂i = �
l∈Si

ωil Yl , X̂ j = �
q∈S j

ωiq Yq and S∗ = Si
�

S j .

3) Coupled Unbiased Distance: Using the patch-patch unbi-
ased distance, we can define the squared coupled unbiased
distance between X̂i (or Yi ) and X̂ j (or Y j ) as

D
2
C

�
X̂i , X̂ j

�=ε · max


0, D

2
U
(X̂i , X̂ j )

�+(1 − ε) · � ¯̂xi − ¯̂x j
�2

.

(14)

where ε is the trade-off parameter and 0 ≤ ε ≤ 1. ¯̂xi and ¯̂x j

are average pixel values of X̂i and X̂ j .
Since D

2
U
(X̂i , X̂ j ) may be negative, we apply

max


0, D

2
U
(X̂i , X̂ j )

�
in Eq. (14) to guarantee that the

patch-patch unbiased distance is not less than zero. Compared
with Euclidean distance, the coupled unbiased distance
contains more structure information because it calculates not
only patch-patch distance

�
i.e. max



0, D

2
U
(X̂i , X̂ j )

��
but also

pixel-pixel distance
�
i.e.

� ¯̂xi − ¯̂x j
�2�. In addition, the coupled

unbiased distance releases the similarity requirement such that
we can find more similar neighboring patches X̂ j satisfying
D

2
C

�
X̂i , X̂ j

� = 0 than that satisfying ||X̂i − X̂ j ||2 = 0.

B. UD-NLAM

Using the coupled unbiased distances, this subsection
introduces the unbiased distance non-local adaptive means
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Algorithm 2 UD-NLAM

(UD-NLAM). Its optimization model is given as

{X̂i , ωi j } = arg min
Xi ,ωi j

�
j∈Si

ωi j D
2
C

�
Xi , Y j

�
+ h

�
j∈Si

ωi j log ωi j

s.t . ωi j ≥ 0,
�
j∈Si

ωi j = 1. (15)

Firstly, we replace the Euclidean distance ||Xi − Y j ||2
of NLAM in Eq. (3) with the coupled unbiased distance
D

2
C

�
Xi , Y j

�
that is robust to measure the similarity between

two image patches. Secondly, keeping the content-adaptive
concept of NLAM, UD-NLAM also considers weight ωi j

as an optimization variable and updates its value in each
denoising iteration. Similar to NLAM, given the initial state

of X̂
(0)

i = Yi , we use the following two equations to update
ωi j and X̂i alternatively:

W (t)
i =

�
j∈Si

exp

⎛
⎝−D

2
C

�
X̂

(t)
i , Y j

�
h

⎞
⎠ · Hij (16)

ω
(t+1)
i j = 1

W (t)
i

· exp

⎛
⎝−D

2
C

�
X̂

(t)
i , Y j

�
h

⎞
⎠ · Hij (17)

X̂
(t+1)

i =
�

j∈Si
ω

(t+1)
i j Y j�

j∈Si
ω

(t+1)
i j

, (18)

where the spatial kernel Hij = exp


− (i− j )2

hs

�
where hs is the

spatial parameter. W (t)
i is the normalization factor. X̂

(t+1)

i and
ω

(t+1)
i j are the denoised image patch X̂i and weight ωi j after

t + 1 iterations. The procedures of UD-NLAM are shown in
Algorithm 2.

C. Comparison of UD-NLAM, NLAM and NLM

First, in terms of the optimization models, NLM takes
only Xi as an optimization variable and calculates weight ωi j

once and keeps it fixed in the subsequent denoising iterations.
NLAM treats both Xi and ωi j as optimization variables and

Fig. 1. Denoised results of the cameraman image (σ = 20) using
UD-NLAM with different patch sizes: (a) clean image, and zoom-in region
of (b) clean image, and (c) noisy image; similar neighbouring patches (green
region) in the search window using (d) 3 × 3, (e) 5 × 5, and (f) 7 × 7 patches
(blue square), individually; and zoom-in denoised results with (g) 3 × 3,
(h) 5 × 5, and (i) 7 × 7 patches, respectively.

updates their values iteratively. UD-NLAM inherits the adap-
tive concept of NLAM, and introduces the coupled unbiased
distance instead of Euclidean distance to measure the image
patch similarity.

Second, according to Eqs. (8)-(14), the unbiased distances
are based on the adaptive ωi j . If ωi j is fixed, we will calculate
only the distance between two noisy patches by Eqs. (8)
and (11). UD-NLAM will revert back to NLM. If we use
the adaptive ωi j and Euclidean distance, instead of unbiased
distances, UD-NLAM will revert back to NLAM.

V. MUD-NLAM

UD-NLAM uses a single patch size to calculate ωi j on each
noise level. Its denoising performance changes dramatically
for different noise levels. Here, we provide two examples of
UD-NLAM. Their denoised results are obtained by using patch
sizes 3 × 3, 5 × 5 and 7 × 7, respectively. Fig. 1 shows the
zoom-in version of the denoised results of the cameraman
image using UD-NLAM when noise level σ = 20. The second
row of Fig. 1 shows the center patches (blue squares) in the
search window and their similar neighbouring patches (green
regions). As can be seen, there are less similar neighbouring
patches when the patch size increases. Their denoised results
are shown in the third row of Fig. 1. When the patch size is
5×5 (Fig. 1(h)) or 7×7 (Fig. 1(i)), there remains noise around
edges of the object. The results indicate that a smaller patch
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Fig. 2. Denoised results of the cameraman image (σ = 80) using UD-
NLAM with different patch sizes: (a) noisy image; and denoised results with
(b) 3 × 3, (c) 5 × 5, and (d) 7 × 7 patches, respectively.

is more appropriate in removing low-level noise than a larger
patch. Fig. 2 shows the denoised results of the cameraman
image using UD-NLAM when σ = 80. Observing from the
denoised result with 3 × 3 patch in Fig. 2(b), the hollow
formed by noise is wrongly preserved as a signal. Many
obvious ringing artifacts are introduced on the background.
The denoised results obtained by using 5 × 5 (Fig. 2(c)) and
7 × 7 (Fig. 2(d)) patches have better visual effects because a
larger patch keeps more structure information and a smaller
patch is more sensitive to the noise pattern. Therefore, the large
patch achieves better denoising effect than the small patch on
high noise levels.

Motivated by these results, we further propose multipatch
UD-NLAM (MUD-NLAM) to combine the advantages of
different patch sizes with UD-NLAM. Given a set of patch
radii K = {p1, p2, · · · , pN }, we firstly calculate ωi j,k for each
pk ∈ K as

ω
(t+1)
i j,k = 1

W (t)
i,k

· exp

⎛
⎝−D

2
C

�
X̂

(t)
i,k , Y j,k

�
h

⎞
⎠ · Hij (19)

where X̂
(t)
i,k and Y j,k are patches with patch radius pk and

center pixel i . Then Eq. (17) can be modified as

ω
(t+1)
i j =

N�
k=1

ζkω
(t+1)
i j,k , (20)

where
N�

k=1
ζk = 1. In our experiments, ζk = cσ a , where σ

denotes the noise level and c is a positive constant. For a

Algorithm 3 MUD-NLAM

small patch size, we set a < 0 such that ζk decreases with the
increase of noise level. For a large patch size, the change of
ζk is opposite to that for the small patch when setting a > 0.
This can also be referenced in real applications.

The detail processes of MUD-NLAM are presented in
Algorithm 3. Compared with UD-NLAM in Algorithm 2,
we add steps 4-7 to calculate ωi j,k for multipatch denoising.

VI. MUD-NLAM-WS

Based on MUD-NLAM, this section proposes a new
denoising method, named MUD-NLAM with wavelet
shrinkage (MUD-NLAM-WS). The denoising processes of
MUD-NLAM-WS are illustrated in Fig. 3. In the proposed
MUD-NLAM-WS, we use MUD-NLAM to generate a guide
image, and then alternatively use MUD-NLAM and wavelet
shrinkage [6], [32] to obtain the final denoised image.

The detail procedures of MUD-NLAM-WS are shown in
Algorithm 4. In the stage of guide image generation, we apply
MUD-NLAM to preprocess the noisy image Y and obtain the
denoised image X̂ and weight ωi j by Eqs. (19) and (20). Then,
we set the denoised image X̂ as the initial guide image G(0),
and use the following equations to update G and X̂. In the
(t + 1)th iteration, we first calculate weight K (t+1)

i j as

K (t+1)
i j,k = 1

W (t)
i,k

· exp

�
−D

2
C

�
G(t)

i,k , G(t)
j,k

�
h

�
· Hij , (21)

K (t+1)
i j =

N�
k=1

ζk K (t+1)
i j,k , (22)

where N denotes the size of the set of patch radii K. Then

we obtain Ĝ
(t+1)

i and Ŷ
(t+1)

i as

Ĝ
(t+1)

i =

�
j∈Si

K (t+1)
i j G(t)

j�
j∈Si

K (t+1)
i j

, (23)
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Fig. 3. The flow chart of MUD-NLAM-WS. The blue block denotes the
stage of guide image generation and the red block denotes the stage of image
denoising.

Ŷ
(t+1)

i =

�
j∈Si

K (t+1)
i j Y j

�
j∈Si

K (t+1)
i j

, (24)

where Ĝ and Ŷ are the blurred layers of G and Y, respectively.
Next, we obtain the short-time Fourier transform (STFT)

[33] coefficients F
(t+1)

i ( f ) and D
(t+1)

i ( f ) as

K (t+1)
i j ·

�
G

(t)
( j) − Ĝ

(t+1)

( j)

�
ST FT−−−→
j∈Si

F
(t+1)

i ( f ), (25)

K (t+1)
i j ·

�
Y( j) − Ŷ

(t+1)

( j)

�
ST FT−−−→
j∈Si

D
(t+1)

i ( f ), (26)

where G
(t)

( j), Ĝ
(t+1)

( j), Y( j), Ŷ
(t+1)

( j) are image pixels cen-
tered at j .

The frequency window Fi is of the same size as the search
window Si and f ∈ Fi . Using F

(t+1)

i ( f ), we calculate the

shrinkage factor H
(t+1)

i ( f ) as

H
(t+1)

i ( f ) = exp

�
− γ η2

i

|F(t+1)

i ( f )|2

�
, (27)

where the variance η2
i = σ 2 �

j∈Si



K (t+1)

i j

�2
and γ denotes the

shrinkage parameter.
Then we utilize the inverse short-time Fourier transform

(ISTFT) and obtain the detail layer D̂ as

H
(t+1)

i ( f )D
(t+1)

i ( f )
I ST FT−−−−→

f ∈Fi

D̂
(t+1)

(i), (28)

where D̂
(t+1)

(i) is the pixel value of i in D̂
(t+1)

.

Finally, we update the denoised image as X̂
(t+1) = Ŷ

(t+1)

+
D̂

(t+1)

and then the guide image as G(t+1) = X̂
(t+1)

.
As shown in Fig. 3, we call the first stage of MUD-

NLAM-WS as guide image generation (i.e. the blue block) and
the second stage as image denoising (i.e. the red block). The
detail steps of MUD-NLAM-WS are shown in Algorithm 4.

Algorithm 4 MUD-NLAM-WS

The guide image G is a pre-denoised image that is used to
guide the noisy image Y to go through the iterative denoising
processes. X̂ denotes the denoised result after each denoising
iteration. They are two different images in MUD-NLAM-WS.
In the stage of guide image generation in Fig. 3, the guide
image G is initialized as the denoised result of applying
MUD-NLAM once. G can provide more accurate structural
information than the noisy image Y itself when computing
weight Kij,k . Besides, the parameter settings of MUD-NLAM
in the stage of guide image generation are different from these
in the stage of image denoising.

VII. EXPERIMENTS

A. Quality Measures

To evaluate the performance of the denoising methods,
we use three image quality measures including the peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [34] index
and method noise.

1) PSNR: PSNR measures the intensity similarity between
the clean image X and the denoised image X̂. The higher
PSNR value indicates the more intensity similarity of X and
X̂. Its calculation equation is

PSN R(X, X̂) = −10 · log10(

1
N1 N2

||X − X̂||22
M AX2

X

), (29)

where X, X̂ are of size N1 × N2 and M AXX is the maximum
pixel value of X.

2) SSIM: SSIM [34] measures the structure between the
clean image X and the denoised image X̂. The larger SSIM
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Fig. 4. Average values of PSNR and SSIM on the test images: (a) average
PSNR; (b) average SSIM.

value means the more similarity between X and X̂, and thus
the better denoising performance. Its calculation equation is

SSI M(X, X̂) = 1

N1 N2

N1 N2�
i=1

× (2μXi μX̂i
+ c1)(2σXi X̂i

+ c2)

(μ2
Xi

+ μ2
X̂i

+ c1)(σ
2
Xi

+ σ 2
X̂i

+ c2)
, (30)

where μXi and μX̂i
are the averages of Xi and X̂i , respectively.

σ 2
Xi

, σ 2
X̂i

are variances and σXi X̂i
is the covariance of Xi and

X̂i . c1 and c2 are constants.
3) Method Noise: Method noise equals to the difference

between the noisy image and the denoised image. The less
structural information in the method noise indicates the better
quality of the denoised image.

Mnoise(Y, X̂) = Y − X̂. (31)

B. Evaluation of NLAM, UD-NLAM and MUD-NLAM

In this subsection, we compare NLAM, UD-NLAM and
MUD-NLAM with seven NLM-based methods, i.e. NLM [11],
UINTA [14], NLEM [21], INLEM [22], NLPR [23], LJS-NLM
[25] and PNLM [24]. We set the parameters of NLAM as

Fig. 5. Denoised results of the f lower image with noise σ = 30: (a) noisy
image (18.60dB); (b) clean image; (c) NLM (24.65dB); (d) UINTA (26.27dB);
(e) NLEM (25.41dB); (f) INLEM (26.08dB); (g) NLPR (25.38dB); (h) LJS-
NLM (26.84dB); (i) PNLM (27.43dB); (j) NLAM (27.18dB); (k) UD-NLAM
(28.04dB); (l) MUD-NLAM (28.29dB).

p = 2, s = 7, h = 20σ 2, those of UD-NLAM as p = 2, s = 7,
h = 7.5σ 2, hs = σ , ε = 0.16, and those of MUD-NLAM as
K={1, 2, 3}, s =7, h =0.3 · ||P||σ 2, hs =σ , ε =0.16. As we
use the noise variance σ 2 to compute the unbiased distance,
we roughly estimate its value before denoising. For other
competing methods, we set their parameters as recommended
in related references.

Fig. 4 shows the average PSNR and SSIM values on forty
test images of size 256 × 256. As can be seen, MUD-NLAM
performs the best among the existing NLM-based methods on
both PSNR and SSIM. From the PSNR results in Fig. 4(a),
NLAM is about 1.0d B higher than NLM on all situations,
and surpasses LJS-NLM by about 0.4d B when σ > 50.
By introducing the coupled unbiased distance, UD-NLAM
achieves great improvements on PSNR. It improves NLM and
PNLM for about 1.8d B and 0.4d B , respectively. UD-NLAM
shows slightly worse performance than LJS-NLM when σ <20
due to the limitation of using single patch. However, UD-
NLAM outperforms other existing NLM-based methods when
σ ≥20. By applying multipatch to UD-NLAM, MUD-NLAM
further improves the denoising performance, especially when
σ < 70. MUD-NLAM surpasses PNLM by 0.6d B approx-
imately. Generally speaking, the denoising performance of
all methods decreases as the noise level increases. In terms
of the SSIM results in Fig. 4(b), NLAM and UD-NLAM
improves NLM by about 8% and 13%, respectively. Besides,
UD-NLAM and MUD-NLAM are 3% and 4% higher than
PNLM when σ > 40, respectively. Moreover, all competing
denoisng methods drop below 55% when σ ≥ 90. However,
the denoising performance of UD-NLAM and MUD-NLAM
descends more gradually than other methods and reaches 55%
when σ =100.

Fig. 5 shows the denoised results of the f lower image at
noise level σ =30. As can be observed from the zoom-in part,
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TABLE III

PSNR AND SSIM RESULTS OF MUD-NLAM-WS AND OTHER METHODS AT NOISE LEVELS σ = 10, 20, · · · , 100.

NLM, UINTA, INLEM and NLPR over-smooth the image and
lose most details of the flower, while NLAM preserves more
detail information. LJS-NLM and PNLM keep some structures
and details but there is obvious noise left around the edges
of the flower. Compared with these competing NLM-based
methods, UD-NLAM and MUD-NLAM perform better in both
reducing noise and in preserving details.

In summary, NLAM outperforms some of the NLM-based
methods. UD-NLAM and MUD-NLAM further improve the
denoising performance of NLAM, and achieve much better
performance than the existing NLM-based methods in both
quantitative and visual evaluations. Besides, in comparison
of NLM, NLAM and UD-NLAM, we can conclude that the
improved denoising performance of the proposed methods is
caused by both adaptive weight ωi j and the proposed distance
measure.

C. Evaluation of MUD-NLAM-WS

In order to show the denoising performance of MUD-
NLAM-WS, we compare it with several advanced denoising
methods, including NL-Bayes [18], DDID [6], BM3D [16],
Slanted Butterworth function based NLM (NLM-SB) [35],
Meyer [36], NLM-SB2 [35], SB-Meyer [35] and seven NLM-
based methods in the previous subsection. NLM-SB [35]
improves NLM by constructing the low-rank approximation
of an NLM operator. Meyer [36] denoises an image by using
the eigenvectors of the patch-graph Laplacian. NLM-SB2 and
SB-Meyer [35] are two improvement methods of NLM-SB by
the simple two-stage scheme and Meyer’s two-stage scheme,
respectively.

TABLE IV

PARAMETER SETTINGS

According to different image sizes, the experiments can be
divided into three groups below:

• Group 1: We compare the proposed NLAM, UD-
NLAM, MUD-NLAM and MUD-NLAM-WS with NL-
Bayes, DDID, BM3D and seven competing methods in
Section VII-B. The experiments are implemented on a set
of test images with size of about 256 × 256. The noise
level σ ranges from 10 to 100.
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Fig. 6. Denoised results of the montage image with noise σ = 50: (a) noisy
image; (b) clean image; (c) NLM; (d) UINTA; (e) NLEM; (f) INLEM;
(g) NLPR; (h) LJS-NLM; (i) PNLM; (j) NL-Bayes; (k) DDID; (l) BM3D;
(m) NLAM; (n) UD-NLAM; (o) MUD-NLAM; (p) MUD-NLAM-WS.

• Group 2: We conduct the comparative experiments on
MUD-NLAM, MUD-NLAM-WS, NL-Bayes, DDID and
BM3D and NLM-SB. Different from Group 1, we use
signal-to-noise ratio (SNR) to measure the noise level in
this group. The simulations are implemented on a set of
images with size of about 512 × 512 at SNR = 0.5, 0.75
and 1, respectively.

• Group 3: We compare MUD-NLAM and MUD-NLAM-
WS with NLM-SB, NLM-SB2, SB-Meyer, Meyer,
NL-Bayes, DDID and BM3D. The experiments are
implemented on a set of test images with size 120 × 120
at SNR = 1.

In each group of experiments, the parameter settings of MUD-
NLAM-WS are shown in Table IV. For the competing meth-
ods, we set their parameters as recommended in corresponding
references. Related results are described as follows:

1) Group 1: In Table III, the best two results are marked
with bold font in blue and black, respectively. By analysing
these quantitative results, we find that MUD-NLAM-WS sur-
passes PNLM by about 1.5d B at each noise level in terms
of PSNR. In view of SSIM, MUD-NLAM-WS performs the
best when σ > 40. Furthermore, MUD-NLAM-WS achieves
competitive results with BM3D especially when σ varies from
40 to 100. This is because, when noise level σ is small, BM3D
takes advantage of the enhanced sparse representation in trans-
form domain to effectively remove noise and retain details.
However, as noise level increases, the sparse representation
also makes BM3D more sensitive to the noise patterns and
produces noticeable artifacts.

Fig. 6 presents the denoised results of the montage image
with noise σ = 50. As can be observed in the zoom-in part
within red square of the clean image (Fig. 6(b)), there is

Fig. 7. Denoised results of the cameraman image with noise
σ = 70: (a) noisy image; (b) clean image; (c) NLM; (d) UINTA;
(e) NLEM; (f) INLEM; (g) NLPR; (h) LJS-NLM; (i) PNLM; (j) NL-
Bayes; (k) DDID; (l) BM3D; (m) NLAM; (n) UD-NLAM; (o) MUD-NLAM;
(p) MUD-NLAM-WS.

obvious sawtooth edge on the contour of the cropped circle.
UD-NLAM, MUD-NLAM and MUD-NLAM-WS reconstruct
this detail in their denoised results. However, the sawtooth
textures are almost disappeared in the denoised images by
the other methods. For the letters shown in the zoom-in part
highlighted within blue square, UD-NLAM, MUD-NLAM and
MUD-NLAM-WS outperform other NLM-based methods in
noise removal and edge preservation. In addition, the com-
peting denoising methods introduce some ringing artifacts to
the edges of letters or on the background in the denoised
results. However, MUD-NLAM-WS generates significantly
less artifacts and retains much more detail structures than other
methods.

Fig. 7 shows the denoised results of the cameraman image
with noise σ = 70. As shown in the zoom-in part, NLM,
NLEM, INLEM and NLPR over-smooth the image. As a
result, it is hard to identify the structures and details of the
camera. NLEM, INLEM and NLPR also bring many ringing
artifacts to the background of the denoised images. LJS-NLM,
PNLM and NL-Bayes leave some noise around the edges
of the camera. UINTA produces clear edges, but loses some
structure information. UD-NLAM and MUD-NLAM perform
better in denoising and keeping edges than other NLM-
based methods. MUD-NLAM-WS preserves more details and
produces less artifacts than BM3D and DDID.

Fig. 8 shows the corresponding method noises of the
denoised results in Fig. 7. Observing the denoised results of
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TABLE V

PSNR COMPARISON AMONG MUD-NLAM-WS, MUD-NLAM AND OTHER FOUR METHODS AT SNR = 0.5, 0.75 AND 1

Fig. 8. Method noise of the cameraman image with noise σ = 70: (a) clean
image; (b) noise; (c) NLM; (d) UINTA; (e) NLEM; (f) INLEM; (g) NLPR;
(h) LJS-NLM; (i) PNLM; (j) NL-Bayes; (k) DDID; (l) BM3D; (m) NLAM;
(n) UD-NLAM; (o) MUD-NLAM; (p) MUD-NLAM-WS.

NLM-based methods in Figs. 8(c)-(i) and (m), we can identify
the outline of the cameraman. Compared with competing
NLM-based methods, the method noises of UD-NLAM and
MUD-NLAM show much less structure information of the
object. In addition, there is almost no noticeable structural
information remaining in the method noises of NL-Bayes,
DDID, BM3D and MUD-NLAM-WS. This demonstrates their
excellent denoising performance.

2) Group 2: As shown in Table V, MUD-NLAM and MUD-
NLAM-WS have better denoising performance than NLM-
SB on all situations. MUD-NLAM-WS surpasses NLM-SB,
NL-Bayes and DDID by about 2.9d B , 0.3d B and 0.2d B
in average, respectively. Besides, MUD-NLAM-WS obtains
higher PSNR values than BM3D in most cases. The denoised
results of NLM-SB are from the reference [35].

TABLE VI

PSNR COMPARISON AMONG MUD-NLAM-WS, MUD-NLAM AND

OTHER SEVEN METHODS AT SNR = 1

Fig. 9 shows the visual results of NL-Bayes, DDID, BM3D,
MUD-NLAM and MUD-NLAM-WS on the girl f ace image
at SNR = 1. As can be observed, NL-Bayes, DDID and
BM3D yield many noticeable ringing artifacts in the face,
while MUD-NLAM-WS removes the noise more effectively
than the competing methods.

3) Group 3: As can be seen in Table VI, MUD-NLAM-WS
and MUD-NLAM perform better than NLM-SB, NLM-SB2,
SB-Meyer and Meyer in terms of PSNR on all test images.
Besides, MUD-NLAM-WS achieves comparable performance
with BM3D, DDID and NL-Bayes, especially on the boat
and lena images. However, on the man1 and woman blonde
images, the PSNR values of MUD-NLAM-WS are greater
than that of BM3D for about 0.3d B . The denoised results
of NLM-SB, NLM-SB2, SB-Meyer and Meyer are from the
reference [35].

From the results of the three groups of experiments,
the main conclusions can be drawn as follows:

• MUD-NLAM-WS produces much more pleasant
denoised images while achieving higher PSNR and
SSIM values than the competing NLM-based methods.

• Although PSNR results of MUD-NLAM-WS over BM3D
are not significant, MUD-NLAM-WS improves BM3D up
to 4% in terms of SSIM. In addition, MUD-NLAM-WS
generates more visually pleasant denoised results than
BM3D. As can be seen in Figs. 6, 7 and 9, BM3D yields
noticeable ringing artifacts and false contours in smooth
areas, especially under the cases with a high level of
noise. These artifacts seriously degrade the visual quality
of denoised images of BM3D. On the other hand, MUD-
NLAM-WS produces much less artifacts while effectively
preserving structure and detail information.

• We have conducted the experiments on the images with
two different resolutions, e.g. 256 × 256 and 512 × 512.
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Fig. 9. Denoised results of the girl f ace image with SNR = 1: (a) clean image; (b) NL-Bayes; (c) DDID; (d) BM3D; (e) MUD-NLAM-WS.

The denoised results of 256 ×256 are shown in Table III
and Figs. 6-8, and the denoised results of 512 × 512 are
shown in Tables V and Fig. 9. As can be seen, MUD-
NLAM-WS produces more appealing denoised results
than other competing denoising methods in terms of
quantitative evaluations and visual comparison. There-
fore, with appropriate parameter settings, the image res-
olution does not influence the denoising performance of
our MUD-NLAM-WS.

VIII. CONCLUSION

In this paper, we introduced the non-local adaptive means
(NLAM) for image denoising. The weight ωi j is considered as
an optimization variable that is adaptive to the image content.
By measuring the image patch similarity, NLAM updates
weight ωi j in each denoising iteration. We then defined three
unbiased distances, i.e. pixel-pixel unbiased distance, patch-
patch unbiased distance and coupled unbiased distance. Since
these distances contain the structure information of noisy
image and the denoised image in each iteration, they provide
more robustness to measure the image pixel/patch similarity
than the traditional Euclidean distance. Using the coupled
unbiased distance, we proposed the unbiased distance non-
local adaptive means (UD-NLAM), and then extended UD-
NLAM into its multipatch version to adapt different noise
levels and proposed multipatch UD-NLAM (MUD-NLAM).
Integrating wavelet shrinkage, we further introduced a novel
denoising method, named MUD-NLAM with wavelet shrink-
age (MUD-NLAM-WS). We conducted extensive compari-
son experiments between our methods and several existing
denoising methods. The quantitative evaluations and visual
comparisons showed that NLAM outperforms some of the
existing NLM-based methods. UD-NLAM and MUD-NLAM
further improve the denoising performance of NLAM, and
MUD-NLAM-WS is superior to the competing state-of-the-
art denoising methods in both noise removal and detail
preservation.

Since the proposed methods focus on grayscale image
denoising, our future work will investigate how to extend the
proposed methods to color image denoising. For example,
we will introduce a novel distance criteria to measure the
similarity between two color image pixels/patches. Moreover,
integrating non-local means into deep learning framework is
interesting to explored.
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